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Measures on the Splitting Subspaces
of an Inner Product Space

Emmanuel Chetcut* and Anatolij Dvure censkij*

Let Sbe an inner product space and EtS) (resp.F(S)) be the orthocomplemented
posetofall splitting (resp. orthogonally closed) subspac8dthis article we study the
possible states/charges tf(iS) can admit. We first prove that wh&is an incomplete
inner product space such that d8nS < oo, thenE(S) admits at least one state with

a finite range. This is very much in contrast to state$=¢8). We then go on showing
that two-valued states can exist &{S) not only in the case wheE&(S) consists of

the complete/cocomplete subspace&dfinally we show that the well known result
which states that every regular stateldi ) is necessarily -additive cannot be directly
generalized for charges and we conclude by giving a sufficient condition for a regular
charge orL(H) to bes-additive.

KEY WORDS: Hilbert space; inner product space; splitting subspace; orthogonally
closed subspace; state; charge.

1. INTRODUCTION

Let Sbe an inner product space (real, complex, or quaternion). Unless oth-
erwise stated, we shall not assume t8& complete. For any subspabk c S
denote byM+ the subspace @consisting of all the vectors that are orthogonal to
M,i.e.M+ = {x € S: (x,y) = Oforally € M}.If MandN are any two subspaces
of Ssuch thatM C N, then we seM+~ = M+ N N. For any subspac® C S
denote byM the completion o, and ifM C N C S, then, let us agree to denote
by MN the closure oM in N, i.e. MN = M N N. When it is known (or assumed)
thatSis complete, i.e. th&bis a Hilbert space, we are usually writikbinstead of
S In addition, for any nonzero vectarC S, let [x] denote the one-dimensional
subspace o spanned by.

We can define a number of families of closed subspacBsidfe mostimpor-
tant examples with respect to the mathematical foundation of Quantum Mechanics
are:

E(9={McS: MM+t =S}, and F(§={McC S: M+ =M},
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the system of splitting subspaces and the system of orthogonally closed subspaces
of S respectively.

Observe thaE(S) ¢ F(S), and wherSis complete we hav&(S) = F(9)
(= L(9)). Surprisingly enough, Amemiya and Araki (1996) proved that the con-
verseisalsotrue;i.e. ifevery orthogonally closed subspaSisasiplitting, therSis
complete. Indeed, it was shown thaH{S) is orthomodulaf, thenE(S) = F(S).
The importance of this result stems from the fact that in general it is very unusual
that an algebraic condition implies topological completeness.

Of great physical importance are measures definedE () and F(S). A
charge mon E(S) is a mappingn : E(S) — R such thatm(A v B) = m(A) +
m(B) wheneverA c B*. Charges offF (S) are defined in a similar way. A state is
anormalized positive charge. A chamen E(S) (or F(9)) is said to ber-additive
if for every countable collectiofiM; : i € N} of mutually orthogonal elements in
E(S) (resp.F(9)), satisfying thatvicy M; exists INE(S),® we have

m(\/ Mi> = > m(M). (1.1)

ieN ieN

(A charge is completely additive if Eg. (1.1) holds for every collection of mutually
orthogonal subspaces.)

In Dvurecenskij and Rik (2002), the possible range that a statd=¢8) can
have was investigated. It was shown that the range of a sta&¢9)ris always the
unit interval [0, 1]. This result was later extended in Chetcuti and DoemsKij
(2003) for bounded charges and it was also shown that the range of unbounded,
sign-preserving chargésatisfying the Jauch-Piron property is always the whole
real lineRR.

2. RANGE OF STATES ON E(9)

Every states on F(S) must satisfy Range[ = [0, 1]. The same cannot be
said for states oi£(S). As the following theorem states, the different algebraic
structure ofE(S) (see, for example Dvueehskij, 1992) allowsE(S) to admit
states taking only finitely many different values.

Theorem2.1. Let S beaninner product space such that dim §/S =n< o0.
Then HS) admits a state taking at most-#a1 values and vanishing on each
complete subspace of S.

2F(9) is said to be orthomodular if for eveM, N € F(S), M ¢ N, we haveN = M v (M+ A N).

3Observe thaF (S) is a complete lattice and thereforg.x M; always exists irF (S).

4 A chargemon F(S) is said to satisfy theign-preserving propertfor any countable collectiofiN; :
i € N} of orthogonal finite-dimensional subspaces-i(5) satisfyingm(N;) > 0, (respm(N;) < 0)
foralli € N, it follows thatm(VienNi) > 0, (respm(VienNi) < 0).
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Proof: Consider the mapping

Sl

s:E(S)—>{O, %1} (2.1)
M i dim M/M.
n
(Observe that dimM/M < n for all M € E(S)). Let M, N € E(S) such that
M L N. We show that dinM/M +dimN/N =dim(M & N)/(M & N). Let
m; =dimM/M and my; =dimN/N and let {x;, Xz, ..., Xm,} C M/M, and
{Y1, Y2, - - - Ymy} C N/N such that the systen{g; + M : 1 <i < m} and{y; +
N:1<i <myp} form bases inM/M and N/N respectively. We show that
R={X+MeN):1<i<m}Ulyy+(M@&N):1<i<my} forms a ba-
sisinM@® N)/(M@&N)=(M @& N)/((M@ N).IfweMe N, thenw=x+y

2.2)

forsomex € M andy € N. Thisimplies that for some scalars, oo, . . ., om1, B1,
B2, ..., Bmz @andu € M, v € N, we have
X = Z ai X + U,
i<m
y= Y AYi+V,
i<mp

and hencex +y = i ®X + 2 -y, fi¥i + U+ V. This means thatk is
spanning in 1 @ N)/(M @ N). In addition, it is not difficult to show th&h is
a linearly independent subset &fl(® N)/(M & N). Hence dim(M & N)/(M &
N) = mq + my. O

In the following example, we exhibit an incomplete inner product sggce
such that dinB/S = n < oo and E(S) admits a stats satisfying

12
Ranges$) = {0, PUPTEREE 1}.

(As it will be shown in Remark 2.9, we can have d§7‘18= n(n > 2) and for
eachM € E(S), dmM/M € {0,n}.)

Example 2.2. For1<i < n, let§ be an incomplete dense hyperplane of a sep-
arable Hilbert spacél; and letSbe the direct sumof, S, ..., S, i.e.

S=50S0 -0 S.
It is clear that dimS/S= n, and if we lets : E(S) — {0, , 2, ..., 1}, defined

= n'n’
by (M) = 9™V ‘thens is a state onE(S). What remains to show is that s is
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onto.Letl<k <nandletM =5 @ S ¢ --- ® S. Of courseM € E(S), and
moreover, dinM /M = k. Hences(M) = .

We now show that if dinB/S = 2, and if there exists all € E(S) such that
dim M/M = 1, then we can define plenty of states vanishing on each complete
subspace o6 We shall need to introduce the following notion and then prove
Proposition 2.3. B B

We define a mapping : E(S) — V(S/S), whereV(S/9) is the system of all
subspaces d¥/S, by

a(M) ={X:xe M}, MeE(®S),

where X denotes the class i|§/S determined by a vectox. Observe that
dima(M) = dimM/M.

Proposition 2.3. The mappingx satisfies the following properties.

(i) EM, N € E(S), M C N, then(0} = «({0}) C a(M) C a(N) C «(S) =
S/S.
(i) 1FM, N€eE(S), M L N, thena(M) N a(N) = {0}.
(i) M, N C E(S), M LN, thena(M) + a(N) = a(M + N).
(iv) a(M) +a(M+) =S/S.

Proof: «(M) is a linear subspace ¢§/S.

(i) Itis evident. _ _

(i) Let X € «(M)Na(N). There arex; € M and x; € N such thatk =
X1 = X. Hencex; — x; = y for somey € S. Theny = y; + Yo + v3,
wherey; e M andy, € N, andys € (M + N)*. Consequentlyx; —
Y1 =Xz + Y2+ ys € ML andx, — y1 € M which yieldsx; = y1 € M,
i.e.Xx=0.

(iii) 1t is clear thata(M) + «(N) C «(M + N). Let X € (M + N). Then
XeM+N=M+N andx = x; + X, wherex; € M andx, € N.
Hence X = X1 + Xy, so thatk € «(M) + a(N).

(iv) It follows from (iii). O

Example 2.4. Suppose that din®/S = 2 and that there exists a subspadec
E(S) with dimM /M = 1. We denote by the system of couples (M), a(M+))
such thatM € E(S), dmM/M =1, and if @(M), «(M™1)) € € then @(M*),
((M)) ¢ £. Let{(aM), «(M1))g} sco be any labelling of. Letr; andm, be the
projections from ¢(M), «(M+)) to the first and second coordinate, respectively.
We choose a familyp, : 6 € ®} of real numbers from the unit interval [0, 1].
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We define a mapping: E(S) — [0, 1] by

0 if dim M/M =0,
1 if dimM/M = 2,
s(M) = T L
Po if dim M/M = 1, 11 ((@(M), «(M*))s = (M),

1—py if dim M/M = 1, mo((@(ML), a(M))y = a(M),

whereM € E(S). Thens is a state orE(S) which vanishes on each complete
subspace o§. In particular, if p, = 1/2 for any6 € ®, we have the state given
by Eqg. (2.1).

In the following, we show that whefis an inner product space with a count-
able linear dimension, then every staten E(S) satisfies Rangsl = [0, 1]. The
following lemma is a direct consequence of Gleason’s Theorem (Deunskij,
1992; Gleason, 1957). For the proof of the lemma, the reader is referred to
(Dvurecenskij and Rik, 2002) Proposition 2.4.

Lemma 2.5. Let H, be an n-dimensional Hilbert space,>n3, and let s be a
state on I(Hy). Then either we haveg[x]) = % forall x € Hp (x # 0), or

[Miny.o S([X]), Max.o S([X])] C Ranges$).

Theorem 2.6. Let S be an inner product space with linear dimension equal to
No. Every state s on E(S) satisfieRange$) = [0, 1].

Proof: Let{e :i € N} be an orthonormal linear basis 8fand letM = span
(e :i=1,2,3,...}. ThenM+ = sparfey_; : i =1, 2, 3,...}. We either have
s(M) > % or s(M+) > %; it is harmless to assume the first. For any 3, we
can express the set of all odd positive integers in the form of a disjoint countable
union of (1 — 1)-element set$;, j € N. PutH; = sparec : k € |} ® [&;] and
let K, be ann-dimensional Hilbert space. Fix anye S(Kp), and for eaclj € N,
let U; : Kn — Hj be a unitary operator such thidi (u) = &;. Define the map
¢ L(Kp) = E(9, M~ spar{Uj€N U;M}. It is not difficult to verify that¢
is well-defined (i.e¢(M) € E(S) for everyM e L(K,)) and that ifM L N in
L(Kp), theng(M) L ¢(N), andp(M & N) = ¢(M) & ¢(N). Moreoverg([u]) =
M. We can now define a stateon L(K,) by 3(M) = s(¢(M)). Observe that
3([u]) = s(M) > 1. Certainly, there exists € S(K,,) suchthag([v]) < i.Lemma
2.5 implies that % %] C Range$). We can repeat this for every> 3 and thus

obtain that [0,2] ¢ Range$). By considering complements, we get [0, d]
Range$). O

In Chetcuti (2002), there is an attempt to characterize inner product spaces
for which E(S) admits a two-valued state. It was not known whether the
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existence of a two-valued state &(S) implies automatically tha®is an incom-
plete hyperplane o8. Here we give a negative answer to this question. Indeed,
we show that for any) € {1, 2, 3...} U {Rq, 2%}, there exists an inner product
spaceSsuch that din5/ S = n andE(S) admits a two-valued state. First we prove
the following lemma which follows the same lines of Lemma 2.2.3 mkRthd
Weber (2001).

Lemma 2.7. Let § C S be two inner product spaces such thatiSdense in
S anddimS,/S; = 1. Then for every Me E(S)), at least, either M or M= is
closed in &.

Proof: Suppose tham e E(S;) such that neitheM nor M-s: is closed inS,.

— S
Letx € M®\M andy € MLtsi \M s, Since dimS,/S; = 1, there exist scalars
a, B such thatrx + By = sfor somes € S. Buts = s, + S, wheres; € M and
S € M+ts1, Then we have that, — ax = By — s, which is a contradiction. O

Theorem 2.8. Foreveryn € {1, 2, 3,...} U {Xq, 2%}, there exists an inner prod-
uct space S such that diByS = n and E(S) admits a two-valued state.

Proof: LetH be an infinite-dimensional, separable Hilbert space and define
asfollows:t =n —1ifne{1,2,3,...},and; =5 if n € {Rg, 2%°}. Let S be a
dense subspace Bfhaving linear dimension equal td2such that dinH/S =

¢. Let 4 denote the collection of all the closed subspaceS dfaving a linear
dimension equal to 2. It is not difficult to verify that|{| = 2%. Hence, we
can express agd = {U,, : 0 < a < w}, wherew is the first ordinal number with
cardinality 2. Using transfinite induction, we can construct a linearly independent
set of unit vectory/ = {v, : 0 < @ < w} C S, such thav, € U, for eache. We
can extend this set to a linear basis (consisting of unit veckoo§)S'. Expressing
thesetfpe R: p> 0} as{p, : 0 < @ < w}, we can define a linear function&l
on S by settingf (v,) = p, foreachv, € Vandf(v) =0forallv- € K\V. Let

S = Ker(f). ThenSis dense ir§ and dimS/S = 1.

By the construction of5 and by Lemma 2.7, it follows that for aM €
E(S), eitherM or M+s has a linear dimension less thaf?.2The mappings :
E(S) — {0, 1} defined bys(M) = 0 if the linear dimension o is less than %,
ands(M) = 1 if linear dimension oM is 2% defines a two-valued state &({(S).
Observe that dins/S = dimH /S = . The proof is complete. O

Remark 2.9 Inthe case when < 2%, we remark that from the constructiongf

it follows that E(S) merely consists of the finite/cofinite dimensional subspaces.
This means that the state defined¢5) by (2.1) gives only a two-valued state.
Indeed, in such case, this is the only statef®) having a discrete range.
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Let C(S) be the collection of all complete and all cocomplete subspaces of
S (A subspacd8 C Sis said to be cocomplete if there exists a complete subspace
A C SsuchthaB = A+ .)Itis very easyto check thatwe always have the inclusion
C(S) c E(9). By Lemma 2.7 it follows that iEis an incomplete hyperplane &f
thenC(S) = E(S). Moreover, wherC(S) = E(S), thenE(S) admits a two-valued
state. As the following example illustrates, the converse of this last statement is
not true.

Example 2.10 Let H; andH, be two separable Hilbert spaces, andéet i € N}

be an ONB ofH;. PutS = sparie : i € N} and defineS' to be the direct sum of

S andHy, i.e. S = S & H,. Now we apply the technique used in the proof of
Theorem 2.8 to derive a dense hyperpl8né S such tha ¢ SandE(S) admits

a two-valued state. If we let to be the first ordinal number with cardinalit§je2
and{U, ¢ S : 0 < «a < w}to be the collection of closed subspaceSdfaving a
linear dimension equal td*2, then we can use transfinite induction and construct
a linearly independent set of unit vectafs= {v, € S : 0 < @ < w} such that:

(i) v, € U, for eache,
(i) {§ :i € N}UV is alinearly independent set 8.

Now we proceed exactly as in the proof of Theorem 2.8, and we extend
{e :i e NJUV toalinearbasiK of S. After expressing the set of positive reals
as{p, : 0 < o < w}, we can define an unbounded linear functiohah S’ in such
a way that it is vanishing on all the vectorskn\V, and such thaf (v,) = p,. It
is clear that if we leS = Ker(f), thenE(S) admits a two-valued state. Moreover,
observe thaf € E(S), andS is neither complete nor cocomplete.

3. REGULAR STATES ON E(S)

In this section we study regular states on the system of splitting subspaces of
an infinite-dimensional inner product spageA chargem on E(S) is said to be
regularif for everye > 0andA € E(S), there exists a finite-dimensional subspace
M c Asuch thaim(A) — m(M)| < e. For any chargenon E(S), we set

Rangg (m) := {m(A) : A € E(S), dimA < oo},
and for any integen =0, 1,. .., we set
Rangg(m) := {m(A) : A€ E(S), dimA =nj}.

First we consider the case wh8iis complete, i.e. we consider regular states
on L(H), whereH denotes an infinite-dimensional Hilbert space. The range of
every state oL (H) is [0, 1] (Dvuregenskij and Rik, 2002). Every regular stase
onL(H) is of the forms(M) = tr(T Py), whereT is a Hermitian trace operator on
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H with unit trace (Dvureénskij, 1992). This implies thatis completely additive.
WhenH is separable, every-additive state oh.(H) is regular (see also Theorem
4.1), and therefore, the regular stateslofH) are precisely the ones that are
o-additive.

Theorem 3.1. Let H be an infinite-dimensional Hilbert space and let T be a
positive Hermitian trace operator on H with unittrace. The states L(H) defined

by st(M) =tr(T Pv), M € L(H), satisfieq0, 1) C Range (sr). Moreover,1
Range (sr) if, and only if, T has a finite system of proper vectors.

Proof: Hermitian trace operators can be expressed in the form
T=> Lx®KX, (3.1)

(S]]
where{A; ;i € |} arethe eigenvalues ®f(possibly repeated) corresponding to the
proper vectorgx; : i e |}. Moreover, sincd is of unit trace, we hav@ ;| A; =
1. If I is finite, we can find a finite ONSu; : i € |} such thatg L u; for all
i, ] €l.Foranyg € [0, Z]andi € |, we can then defing = cos¢X; + Singu;.
LetY = @ic [vi] and considesr (Y),

st(Y) = sty]) = D Al X))

iel i,jel
=Y 2l )P =) 1 coS ¢ = cos .
iel iel
Hence, fom = |l |, Range(sr) = Range (sr) = [0, 1].

Now suppose thdtis infinite. Given any > 0, there exists a finite subset
lo C | such thatzielo)q > 1—e. Let{uy; :i € lg} be an ONS irH such that
X Luj foralli, j € lo.

Define, as in the first part of the present propf= cosgx; + singu;, i € I,
and letY), = @i [Vi]. Then

st(Yio) = D (%D = Y D Al X))l

i€l iely jel
= > Al xp)P =) hicodg =cofp Y A
i,jE|0 i6|0 i€|0
This implies that Rangdsr) D [0, 1). Observe thasr (M) = 1 if, and only if,
{ui 1i € 1} C M, which yields that I Range (sr) whenl is infinite. O

Corollary 3.2. Let H be an infinite-dimensional Hilbert space and let s be a
regular state on L(H). For any A& L(H), dim A = oo, we have

[0,s(A)) C {s(M): M cC A, dimA < oo} C [0, s(A)].
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We now recall to the fact that every staten E(S) can be uniquely expressed
in the form

S=asg + Bsv,

whereq, 8 € [0, 1] such thatr + 8 = 1, sg is a regular state arg is a state on
E(S) vanishing on all the finite-dimensional subspace&.dfhis was originally
proved by Aarnes (1970) for the case wiBsa Hilbert space, and then generalized
for all inner product spaces by the second author of this article (Rensij,
1991).

Corollary 3.3. Let s=asg+ sy be a state on L(H)dimH = co. Then
Range (s)=[0,1], and

[0, ) c Range(s) C [0, «]. 3.2)

Proof: By the result proved in Dvuehskij and Rtk (2002), we have Range
(s) = [0, 1], and Corollary 3.2 implies Eq. (3.2). O

Now we consider states df(S) whenSis an incomplete inner product space.
If Tis a positive Hermitian trace operator &with unit trace, then the mapping
sr on E(S) defined by

sr(M) = tr(T Py), M € E(9), (3.3)

is a regular state oR&(S). The converse is also true. (The reader may need to refer
to DvureCenskij (1992), Theorem 4.3.5.) Indeed, every regular stat&(@) is

of the form defined by Eg. (3.3) for some unique positive trace opefator S

with unit trace. Observe that, in contrastlt¢H ), regular states o&(S) are not
o-additive. In fact, for a separable inner product spade(S) admits a -additive

state only ifSis complete. In Theorems 2.1 and 2.8, it was seen that the range of
states orE(S) can be finite. We shall show that this cannot be when our stiate
regular. Before showing this, we prove the following lemmas.

Lemma3.4. Let{fy, fp, ..., f,} be afinite ONSinthe completi(§10f aninner
product space S. For evedy> 0 there exists an ONfhy, hy, ..., hy} C S such
that||fi — hj|]| < §foralli <n.

Proof: LetM; = sparfy, f5, ..., fo_1}'5. Sincef, € My and becauskl; N S
is dense inM4, there existsh, € M; N S such that|| f, — hy|| < §. Put M, =
sparf fi, fo, ..., fn_o, hn, fa}'s. Repeating the same argument, we can fing
€ M, N Ssuch that|| f,_1 — hy_1]| < 8. Continuing like this, we construct the
ONS{hy, hy, ..., hy} C Ssatisfying the required condition. O
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Lemma3.5. Lets be astate on ), dimS= oco. There exists a unique Hermi-
tian operator | on S such that §x]) = (Tox, x) for all x € S(S). Moreover,
for everye > 0, there existss > 0 such that for every xy € S(S) satisfying
[IX =yl < &, we haves([x])| — s([y])| < e.

Proof: By restrictings on L(N), whereN is a three-dimensional subspace of
S we get a finitely additive (positive) measusig vy on L(N). By Gleason’s
theorem, there exists a bounded symmetric bilinear fgrmn N x N such that
s([x]) = tn(X, X) holds for allx € S(N). Since every symmetric bilinear form is
uniquely determined by its quadratic form, we can define a bilinearfom® x S
as follows: for anyk, y € S, letN be any three-dimensional subspace contairing
andy, then put(x, y) = tn(X, y). Itis clear that(x, X) = s([x]) for all x € S(S).
Sinces is boundedst is also bounded and therefdrean be uniquely extended to
a bounded symmetric bilinear fortnon S x S. Consequently, there is a unique
Hermitian operatoflp on Ssuch thas([x]) = (Tox, x) for all x € S(S).

Now letx, y € S). Then we have

IS(IX]) — s([yD| = [{ToX, x) — (Toy, Y)|
= [(ToX, X) = (ToX, ¥) + (ToX, y) — (Toy, V)|
< [{ToX, X = y)| + [(ToX — Toy, Y}|
< 2[|Toll - [IX = Il

(
(

which implies thasis “continuous onS(S).” O

We remark that it can be also shown that the Hermitian opefiatobtained
in Lemma 3.5 is of trace class.

Theorem 3.6. Let S be anincomplete inner product space and let T be a positive
trace operator onS with unit trace. The state-n E(S) defined as in Eq. (3.3),
satisfied0, 1) C Rangeg (st). Moreoverl € Range (sr) if, and only if, T has only

a finite system of proper vectors, and these are all in S.

Proof: The Hermitian trace operatdrcan be expressed as
T= Z)»i X ® X,
iel

where {4; :i € |} are the eigenvalues (possibly repeated)Toforresponding
to the proper vector$x; :i € |'}. Moreover, sincerl is of unit trace, we have
Y ici A = 1. This implies that for every > 0, there exists a finite subskt C

| such that);, A > 1—e. Take an ONSw; :i € lo} C sparix; :i € lg}*=.
Then ZieI(,(TWi ,Wj) < €. By Lemma 3.5 there exist&> 0 such that for each
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Xi, Wi, i € lgandu, v € §(S), we have

|ST([u]) — Ai| < Ii wheneveru — x| < §,
0
IST(V]D) — (Tw, w;)| < Ii wheneverfv — w;j| < §.
0
By Lemma 3.4, we can find an ON@I; : i € I} U {vj :i € lg} C Ssuch
that||u; — x|| < § and|]v; — w;]|| < 8§, for eachi C lo. This implies that
a= ST( Diel, [Ui]) >1—-2¢, and b= ST(GBielO [Vi]) < 2e.

For eachi € Io, lety; = cosg u; + sing v;, whereg € [0, 7]. SetY|, =
@iei[Vi]- Then

st(Yip) = Z sr([yi])

i6|0

=D > xlly X

iely jel

= ZZAJ |(cospu; + singvi, x;)|?

icly jel

= 33" j(c08 Bl xj) 2 + Sir? gl vy, ) 2

icly jel
+ sing cosp{(vi, X;){(Xj, Ui) + (Ui, Xj}(Xj, Vi) }}
=a cog ¢ + b sirP ¢ + y sing cosgp,
wherey € R. By elementary real analysis theory, it follows that
[a, b] c Range(s).

Thisimpliesthat[2, 1 — 2¢] C Rangg (s). Sinces was arbitrary, we have [0, X}
Rangs (s). We conclude by noting that (M) = 1if,andonlyif,{x; :i € I} C M.
Thus, 1€ Rangg(sr) only when {x :i € |} is finite and is contained
inS O

Corollary 3.7. Let S be anincomplete inner product space and let s be a regular
state on E(S). For any & E(S), dim A = oo, we have
[0,s(A)) Cc {s(M): M C A, dimA < oo} C [0, s(A)].
By considering the Aarnes decomposition of any state E(S), s = aSg +

Bsv, itimmediately follows (by Corollary 3.7), that [&;) C Range (s). However,
observe that the range®heed not be convex asitis in the case wB&ctomplete.
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Only if the regular component &is “sufficiently large,” we can guarantee that
Range$) = [0, 1]. This happens whem > 1.

We have also examples of statesiB{t) such that the regular component of
their decomposition is not zero (i.e.# 0), and yet their range is not convex. For
example, leBbe aninner product space such tBéb) consists of the finite/cofinite
subspaces ob. (Refer to Remark 2.9.) Led, be a state orkE(S) vanishing on
all the finite-dimensional subspaces ®fobserve that in this case this state is
necessarily two-valued), and lsg be any regular state oB(S). Let 0< « <
%, and consider the state= asg + (1 — «)sy. It is not difficult to verify that

(o, 1— @) N Ranges) = ¢.

4. REGULAR CHARGES ON L(H)

We recall that a cardinal numbaris said to benonmeasurablé for every
set.A having cardinalitya, the power set ofA admits noo-additive probability
measureu satisfyingu({x}) = 0 for all x € A. (Refer to Ulam, 1930.) For each
n=0,1,2,..., the cardinal, is nonmeasurable. Moreover,afandb are two
cardianals such that < b andb is nonmeasurable, theris also nonmeasurable.
In addition, if we adopt the continuum hypothesis, then the cardinalily, &,
is equal tork,, and therefore is also nonmeasurable. It should be noted that most
practical applications involve nonmeasurable cardinals; very often countable car-
dinals. Moreover, there are set-theoretical models, relative to which, each cardinal
is nonmeasurable.

Theorem 4.1. Let H be a Hilbert space whose dimension is a nonmeasurable
cardinal. Everyo-additive charge on L(H) is completely additive and regular.

Proof: Letmbe ac-additive charge oh(H) and let{M; : i € I} be any collec-

tion of a mutually orthogonal subspaceslitH). Define the mapping : 2! —

R, u(J) = m(ViegM;). The set functionu defines a finite signed-measure on

2', and therefore it admits a Jordan decomposition, i.e. it can be expressed as
the difference of two positive finite signed measure's and ~. By the The-

orem of Ulam (1930), there exist two (at most) countable sub&etand J_

of I such thatu(1\Jy) = u_(I1\J_) =0. PutJy = J. UJ_. Thenu(l\Jp) =

1w (1\Jo) — n_(1'\Jo) = 0. This implies that

m<\/ Mi> = (1) = 1(Jo) + 11\ Jo)
i€l
=Y udiN+ D w(id)

iEJo i€|\Jo

= Z m(M;).

iel
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In particular, letM = Vi [x], where{x; : i € I} if an ONB of M. Then
m(M) = >, m([x]), and thereforenis regular. O

If H is a Hilbert space whose dimension is a nonmeasurable cardinal, then
the set of regular states dn(H) coincides with the set of-additive states.

The same cannot be said for charges. Dorofeev and Sherstnev (1990) proved
that every completely additive charge &rfH), dim H = oo, is bounded. If

we restrict ourselves to spaces with nonmeasurable dimension, we have: every
o-additive charge ori.(H) is bounded. Our aim is to show that for an infinite-
dimensional Hilbert spadd, there always exist a regular chargelgiH) which is
unbounded.

First we define a Hamel discontinuous function®ras follows. (See also
Hamel, 1905.) Le® = {xs : s € X} be aHamel basis iR over the field of rational
numbers. It is harmless to assume tkat 0 for eachs € X. Fix an element
Xs, € B. Then every real number € R can be uniguely expressed in the form

X = PsXs + Z PsXs, (4.1)
Seo
whereo is a finite subset ok\{sy} and 8’s are rational numbers. We define a
Hamel discontinuous functios : R — Q by ¢(x) = B, wheneverx € R is of
the form (4.1).

Let s be any regular state dn(H). We claim to show thap o s is a regular
charge. Lete > 0 and A € L(H) be given. If¢(s(A)) = 0, we takeM = {0},
which yields [¢(S(A)) — ¢(S(M))| < €. So let 0# S(A) = By Xs, + Y scy BsXs
wherefsy # 0. There is an integan > 1 such that In < € andxg,/n < s(A).
Then 0< (B, — 1/N)Xs, + X _oc, BsXs < S(A). By Corollary 3.2, there is a finite-
dimensional subspack®l of A such thats(M) = (Bs, — 1/NM)Xg, + X _scy BsXs-
Hence¢(s(A)) — ¢(s(M))| = 1/n < e which proves thap o sisaregular charge
onL(H).

In Chetcuti and Dvurednskji (2003), the authors have proved that the range
of a bounded charge dn(H) is always convex ifR. This implies that the charge
¢ o sis unbounded. In view of the Dorofeev—Sherstnev result, it followsdghat
sis noto-additive.

Theorem 4.2, Let H be a Hilbert space whose dimension is an infinite nonmea-
surable cardinal. The set ef-additive charges on L(H) is a proper subset of the
set of regular charges on L(H).

Observe also that Rang o s) is rationally convex. Indeed, letp; =
?(S(A)) < ¢(s(B)) = B2, whereA, B € L(H)andletg € Qsuchthdt gy < g <

5 A subsetA of R is rationally convesif for any x;, X2 € A, A € Q N (0, 1), we haveux; + (1 — A)x2
e A
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B2 be given. There is a rational number0< A < 1, suchthag = A 81 + (1 —
A)B2. Thereforex = A s(A) + (1 — 1) s(B) € [0, 1). By Theorem 3.2, there is a
finite-dimensional subspadd < L(H) such thats(M) = x. Consequentlyg =
¢(s(M)) € Rangeg (¢ o s). Since¢ o s is unbounded, we have Range o s) =
Rangef o s) = Q.

We recall that a charge on E(S) (or on F(S)) is P(S)-bounded(resp.
P1(S)-bounded) if Rangg(m) is bounded (resp. Rangen) is bounded). If in the
previous construction we choose our regular state to be a vectoggtidesome
u € S(H), one can easily verify that Range o s,) is unbounded. Thus, not every
regular charge oh(H) is P;(H)-bounded. This answers to the negative a question
asked in Chetcuti and Dvurenskij (2004), whether every regular chargeq%)
is P1(S)-bounded.

In Chetcuti and Dvuregnskij (2003) and Chetcuti and Dveexiskij (2004),
the notion of sign-preserving charges was introduced. In Chetcuti and @angie]
(2004), it was proved that every regular sign-preserving charge(ét) is o-
additive. From this, and from the above discussion, we see that the regularity of a
charge is not sufficient for it to satisfy the sign-preserving property.

We conclude by giving a sufficient condition for a regular chargé& @) to
beo-additive.

Theorem 4.3. Let H be an infinite-dimensional Hilbert space and let m be
a Pi(H)-bounded, regular charge on L(H). Then m dsadditive. Moreover,
Rangg (m) contains &, 8), where o« =infim(A): A€ L(H)} and 8=
sugm(A) : Ae L(H)}.

Proof: We can repeat the steps of the proof of Lemma 3.5 to obtain a Hermitian
operatofT on H satisfying tham([x]) = (T x, x) for all x € S(H).

We show thaT is a trace class operator. First we recall thaan be expressed
as the difference of two positive operatdisandT,, andH can be split into two
orthogonal subspacé$; andH, such thafl; H, = T,H; = 0. SinceT; is positive,
to show that it is a trace operator, it is sufficient to verify that_, (Tix;, i) is
summable for one ONBx; :i € I} in H. Let{x :i € lo} and{y; : j € Jo} be
orthonormal bases dfi; andH, respectively. Then

DT, %) + Y Ty v =D (T, x) =Y m(x]).  (4.2)
ielp jedo ielp ielp
Sincem is regular, and because is positive on all the finite-dimensional
subspaces dfiy, it follows thatmis positive (and therefore monotone) b(H,).
Hence, for any finite subseg of 1o, we have 0< Zielé m([x]) < m(Hy). This
implies that 0< >, m([x]) < oo, and thereforeT; is a trace operator. The
same can be shown fdk, and therefore it follows thaf is a trace operator. So
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we can define the completely additive charge on L(H) by settingmy (M) =
tr(TPwm), M € L(H). Our goal is to show thaihr = m. Sincemandmy are regular
and monotone o (H;) and L(H,), it follows thatm(H;) = mr(H;),i = 1, 2.
Hence,

m(H) = m(Hy) + m(Hz) = mr(Hy) + my(Hz) = tr (TPy).

Now letM € L(H). If we restrictmto L (M), we can derive a Hermitian trace
operatorTy, on M such that

(Tmx, x) = m([x]) = (Tx, x)

for all x € S(M). Since bilinear forms are uniquely determined by their corre-
sponding quadratic forms, it follows th&Ty X, y) = (Tx, y) for all x,y € M,
and therefore, tiy) = tr(T Py). (Observe thafly, is equal to the restriction
of PyTPy on M.) The subspac#! can be split into two orthogonal subspces
M; and M, such thatTy, is positive onM; and negative orM,. Thus we can
repeat the same arguments as in the preceding paragraph and we simply inter-
changeH with M andT with Ty, and we gem(M) = tr(Ty), which implies that
m(M) = tr(TPy).

Now we show thatd, 8) C Rangg (m). For everye > 0, there exists a
finite-dimensional subspad® c H such tham(A) > B — €. In addition, we can
find a finite-dimensional subspagé c A' such that dimA’ = dim Aand—e <
m(A") < e.lfwelet{a :i < n}and{a :i < n}be orthonormal bases handA’
respectively, we can defing = cosga; + singa, ¢ € [0, 7], andY = ®i<n[Vi].
By a similar argument to that used in the proof of Theorem 3.6, one can show that
[m(A), m(A)] ¢ Rangg (m). This implies that [08] C Rangg (m). But we can
also find a finite-dimensional subspaBec H such thatm(B) < « + €. By re-
peating the same arguments of above, we deducedh@} € Rangg (m). Thus
(o, €) C Rangg (m). O
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